@inproceedings{882225a43c9e46f5a4150c9b138225c7,
title = "Microchannel two-phase flow oscillation control with an adjustable inlet orifice",
abstract = "This work describes the experimental setup, method, and results of utilizing a micrometer to move an adjustable orifice immediately in front of an array of microchannels. Research by others indicates potential for significant improvement in delaying critical heat flux and increasing heat transfer coefficients when placing an orifice in front of each individual channel of a microchannel array. The experimental setup in this work allows incremental orifice size changes. This ability allows the experimentalist to find which orifice size provides enough pressure drop immediately in front of the channels to reduce oscillations. The design also allows for rapid change of orifice size without having to remove and replace any components of the test setup. Signal analysis methods were used to identify frequency and amplitude of pressure and temperature oscillations. Low mass flux experiments (300kg m-2 s -1 and 600kg m-2 s-1 of R134a in a pumped loop) showed reduced channel wall temperatures with smaller orifice sizes. The orifice concept was found to be more effective at reducing oscillations for the higher 600kg m-2 s-1 flow rate.",
author = "Odom, {Brent A.} and Miner, {Mark J.} and Ortiz, {Carlos A.} and Sherbeck, {Jonathan A.} and Prasher, {Ravi S.} and Patrick Phelan",
year = "2011",
doi = "10.1115/imece2011-62078",
language = "English (US)",
isbn = "9780791854976",
series = "ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011",
publisher = "American Society of Mechanical Engineers (ASME)",
pages = "793--801",
booktitle = "Nano and Micro Materials, Devices and Systems; Microsystems Integration",
note = "ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Conference date: 11-11-2011 Through 17-11-2011",
}