TY - JOUR
T1 - Model-Dependent Solvation of the K-18 Domain of the Intrinsically Disordered Protein Tau
AU - Maiti, Sthitadhi
AU - Heyden, Matthias
N1 - Funding Information: The authors are grateful to the Gordon and Betty Moore Foundation for financial support (Award #9162.10) and acknowledge Research Computing at Arizona State University for providing high-performance computing resources that have contributed to the research results reported within this work. Publisher Copyright: © 2023 American Chemical Society.
PY - 2023/8/24
Y1 - 2023/8/24
N2 - A known imbalance between intra-protein and protein-water interactions in many empirical force fields results in collapsed conformational ensembles of intrinsically disordered proteins in explicit solvent simulations that disagree with experiments. Multiple strategies have been introduced in the literature to modify protein-water interactions, which improve agreement between experiments and simulations. In this work, we combine simulations with standard and modified force fields with a spatially resolved analysis of solvation free energy contributions and compare the consequences of each strategy. We find that enhanced Lennard-Jones (LJ) interactions between protein atoms and water oxygens primarily improve the solvation of nonpolar functional groups of the protein. In contrast, modified electrostatics in the water model or strengthened LJ interactions between the protein and water hydrogens mainly affect the hydration of polar functional groups. Modified electrostatics further impact the average orientation of water molecules in the hydration shell. As a result, protein-water interactions with the first hydration layers are strengthened, while interactions with water molecules in higher hydration shells are weakened. Hence, distinct strategies to balance intra-protein and protein-water interactions in simulations have qualitatively different effects on protein solvation. These differences are not necessarily captured by comparisons to experiments that report on global parameters describing protein conformational ensembles, e.g., the radius of gyration, but will influence the tendency of a protein to form aggregates or phase-separated droplets.
AB - A known imbalance between intra-protein and protein-water interactions in many empirical force fields results in collapsed conformational ensembles of intrinsically disordered proteins in explicit solvent simulations that disagree with experiments. Multiple strategies have been introduced in the literature to modify protein-water interactions, which improve agreement between experiments and simulations. In this work, we combine simulations with standard and modified force fields with a spatially resolved analysis of solvation free energy contributions and compare the consequences of each strategy. We find that enhanced Lennard-Jones (LJ) interactions between protein atoms and water oxygens primarily improve the solvation of nonpolar functional groups of the protein. In contrast, modified electrostatics in the water model or strengthened LJ interactions between the protein and water hydrogens mainly affect the hydration of polar functional groups. Modified electrostatics further impact the average orientation of water molecules in the hydration shell. As a result, protein-water interactions with the first hydration layers are strengthened, while interactions with water molecules in higher hydration shells are weakened. Hence, distinct strategies to balance intra-protein and protein-water interactions in simulations have qualitatively different effects on protein solvation. These differences are not necessarily captured by comparisons to experiments that report on global parameters describing protein conformational ensembles, e.g., the radius of gyration, but will influence the tendency of a protein to form aggregates or phase-separated droplets.
UR - http://www.scopus.com/inward/record.url?scp=85168439170&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85168439170&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.3c01726
DO - 10.1021/acs.jpcb.3c01726
M3 - Article
C2 - 37556237
SN - 1520-6106
VL - 127
SP - 7220
EP - 7230
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 33
ER -