TY - JOUR
T1 - Molecular characterization of a naturally occurring intraspecific recombinant begomovirus with close relatives widespread in southern Arabia
AU - Al-Saleh, Mohammed A.
AU - Al-Shahwan, Ibrahim M.
AU - Brown, Judith K.
AU - Idris, Ali M.
N1 - Funding Information: This study was supported in part by a grant (11-BIO1577-02) from The Long-term Comprehensive National Plan for Science, Technology and Innovation, King Saud University, Saudi Arabia. The authors are thankful to Drs. Phil Mullineaux and Roger Hellens of John Innes Center and Biotechnology and Biological Sciences Research council for providing the pGreen kit.
PY - 2014/6/2
Y1 - 2014/6/2
N2 - Background: Tomato leaf curl Sudan virus (ToLCSDV) is a single-stranded DNA begomovirus of tomato that causes downward leaf curl, yellowing, and stunting. Leaf curl disease results in significant yield reduction in tomato crops in the Nile Basin. ToLCSDV symptoms resemble those caused by Tomato yellow leaf curl virus, a distinct and widespread begomovirus originating in the Middle East. In this study, tomato samples exhibiting leaf curl symptoms were collected from Gezira, Sudan. The associated viral genome was molecularly characterized, analyzed phylogenetically, and an infectious clone for one isolate was constructed. Findings. The complete genomes for five newly discovered variants of ToLCSDV, ranging in size from 2765 to 2767-bp, were cloned and sequenced, and subjected to pairwise and phylogenetic analyses. Pairwise analysis indicated that the five Gezira isolates shared 97-100% nucleotide identity with each other. Further, these variants of ToLCSDV shared their highest nucleotide identity at 96-98%, 91-95%, 91-92%, and 91-92% with the Shambat, Gezira, Oman and Yemen strains of ToLCSDV, respectively. Based on the high maximum nucleotide identities shared between these ToLCSDV variants from Gezira and other previously recognized members of this taxonomic group, they are considered isolates of the Shambat strain of ToLCSDV. Analysis of the complete genome sequence for these new variants revealed that they were naturally occurring recombinants between two previously reported strains of ToLCSDV. Finally, a dimeric clone constructed from one representative ToLCSV genome from Gezira was shown to be infectious following inoculation to tomato and N. benthamiana plants. Conclusion: Five new, naturally occurring recombinant begomovirus variants (>96% shared nt identity) were identified in tomato plants from Gezira in Sudan, and shown to be isolates of the Shambat strain of ToLCSDV. The cloned viral genome was infectious in N. benthamiana and tomato plants, and symptoms in tomato closely resembled those observed in field infected tomato plants, indicating the virus is the causal agent of the leaf curl disease. The symptoms that developed in tomato seedlings closely resembled those observed in field infected tomato plants, indicating that ToLCSDV is the causal agent of the leaf curl disease in Gezira.
AB - Background: Tomato leaf curl Sudan virus (ToLCSDV) is a single-stranded DNA begomovirus of tomato that causes downward leaf curl, yellowing, and stunting. Leaf curl disease results in significant yield reduction in tomato crops in the Nile Basin. ToLCSDV symptoms resemble those caused by Tomato yellow leaf curl virus, a distinct and widespread begomovirus originating in the Middle East. In this study, tomato samples exhibiting leaf curl symptoms were collected from Gezira, Sudan. The associated viral genome was molecularly characterized, analyzed phylogenetically, and an infectious clone for one isolate was constructed. Findings. The complete genomes for five newly discovered variants of ToLCSDV, ranging in size from 2765 to 2767-bp, were cloned and sequenced, and subjected to pairwise and phylogenetic analyses. Pairwise analysis indicated that the five Gezira isolates shared 97-100% nucleotide identity with each other. Further, these variants of ToLCSDV shared their highest nucleotide identity at 96-98%, 91-95%, 91-92%, and 91-92% with the Shambat, Gezira, Oman and Yemen strains of ToLCSDV, respectively. Based on the high maximum nucleotide identities shared between these ToLCSDV variants from Gezira and other previously recognized members of this taxonomic group, they are considered isolates of the Shambat strain of ToLCSDV. Analysis of the complete genome sequence for these new variants revealed that they were naturally occurring recombinants between two previously reported strains of ToLCSDV. Finally, a dimeric clone constructed from one representative ToLCSV genome from Gezira was shown to be infectious following inoculation to tomato and N. benthamiana plants. Conclusion: Five new, naturally occurring recombinant begomovirus variants (>96% shared nt identity) were identified in tomato plants from Gezira in Sudan, and shown to be isolates of the Shambat strain of ToLCSDV. The cloned viral genome was infectious in N. benthamiana and tomato plants, and symptoms in tomato closely resembled those observed in field infected tomato plants, indicating the virus is the causal agent of the leaf curl disease. The symptoms that developed in tomato seedlings closely resembled those observed in field infected tomato plants, indicating that ToLCSDV is the causal agent of the leaf curl disease in Gezira.
KW - Geminivirus
KW - Tomato leaf curl Sudan virus
KW - Virus variability
KW - Whitefly vector
UR - http://www.scopus.com/inward/record.url?scp=84903700020&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903700020&partnerID=8YFLogxK
U2 - 10.1186/1743-422X-11-103
DO - 10.1186/1743-422X-11-103
M3 - Article
C2 - 24890736
SN - 1743-422X
VL - 11
JO - Virology Journal
JF - Virology Journal
IS - 1
M1 - 103
ER -