Abstract
A unified platoon-based mathematical formulation called PAMSCOD is presented to perform arterial (network) traffic signal control while considering multiple travel modes in a vehicle-to-infrastructure communications environment. First, a headwaybased platoon recognition algorithm is developed to identify pseudo-platoons given probe vehicles' online information. It is assumed that passenger vehicles constitute a significant majority of the vehicles in the network. This algorithm identifies existing queues and significant platoons approaching each intersection. Second, a mixed-integer linear program (MILP) is solved to determine future optimal signal plans based on the current traffic controller status, online platoon data and priority requests from special vehicles, such as transit buses. Deviating from the traditional common network cycle length, PAMSCOD aims to provide multi-modal dynamical progression (MDP) on the arterial based on the probe information. Microscopic simulation using VISSIM shows that PAMSCOD can easily handle two common traffic modes, transit buses and automobiles, and significantly reduce delays for both modes under both non-saturated and oversaturated traffic conditions as compared to traditional state-of-practice coordinated-actuated signal control with timings optimized by SYNCHRO.
Original language | English (US) |
---|---|
Pages (from-to) | 462-489 |
Number of pages | 28 |
Journal | Procedia - Social and Behavioral Sciences |
Volume | 17 |
DOIs | |
State | Published - 2011 |
Keywords
- Mixed integer linear programming
- Multi-modal dynamical progression
- Multi-modal traffic signal control
- Platoon recognition
- Vehicle-to-Infrastructure communications
ASJC Scopus subject areas
- General Social Sciences
- General Psychology