TY - JOUR
T1 - Phosphonates as Mimics of Phosphate Biomolecules
T2 - Ab Initio Calculations on Tetrahedral Ground States and Pentacoordinate Intermediates for Phosphoryl Transfer
AU - Thatcher, Gregory R.J.
AU - Campbell, A. Stewart
PY - 1993
Y1 - 1993
N2 - The use of phosphonates as analogs of phosphate biomolecules was explored using ab initio SCF calculations at the 3-21G(*) and 3-21+G(*) levels. Fully optimized geometries were obtained for the tetrahedral ground-state monoanions CHF2PO3H−, CH2FPO3H−, CH3PO3H−, BH3PO3H2-, H2PO3−, and [formula omitted] and torsional energy profiles obtained for CH2FPO3H− and H2PO3−. Comparison was made of (1) structure and conformational dependence for these species and (2) electrostatic potential maps for ethylene phosphate and its monofluoromethylene phosphonate analog. The results suggest that, despite the isopolar relationship of fluoromethyl phosphonates and the parent phosphates, binding at a receptor site may be considerably perturbed for the phosphonate analogs. Fully optimized geometries were located for isomers of the pentacoordinate trigonal bipyramidal species PH4X (X = CH3, CF3, CF2H, CFH2, BH3−, BF3−, O−, OH) and [formula omitted]. Torsional energy profiles were explored for PH4X (X = CH3, CF3) CF2H, CFH2). The calculated relative apicophilicity scale in PH4X (CF3 > CF2H > CFH2 > CH3 > OH > O− ≫ BF3− > BH3−) varies in the five-membered cyclic phosphoranes by reversal of CH3 and OH. It is concluded that mono- and difluoromethylene phosphonates have similar ligand preferences to the parent phosphates in the pentacoordinate state and by consideration of the fully optimized geometry of the pentacoordinate dianion [formula omitted] that these phosphonates are capable of forming transition-state analogs at the active site of phosphoryl transfer enzymes.
AB - The use of phosphonates as analogs of phosphate biomolecules was explored using ab initio SCF calculations at the 3-21G(*) and 3-21+G(*) levels. Fully optimized geometries were obtained for the tetrahedral ground-state monoanions CHF2PO3H−, CH2FPO3H−, CH3PO3H−, BH3PO3H2-, H2PO3−, and [formula omitted] and torsional energy profiles obtained for CH2FPO3H− and H2PO3−. Comparison was made of (1) structure and conformational dependence for these species and (2) electrostatic potential maps for ethylene phosphate and its monofluoromethylene phosphonate analog. The results suggest that, despite the isopolar relationship of fluoromethyl phosphonates and the parent phosphates, binding at a receptor site may be considerably perturbed for the phosphonate analogs. Fully optimized geometries were located for isomers of the pentacoordinate trigonal bipyramidal species PH4X (X = CH3, CF3, CF2H, CFH2, BH3−, BF3−, O−, OH) and [formula omitted]. Torsional energy profiles were explored for PH4X (X = CH3, CF3) CF2H, CFH2). The calculated relative apicophilicity scale in PH4X (CF3 > CF2H > CFH2 > CH3 > OH > O− ≫ BF3− > BH3−) varies in the five-membered cyclic phosphoranes by reversal of CH3 and OH. It is concluded that mono- and difluoromethylene phosphonates have similar ligand preferences to the parent phosphates in the pentacoordinate state and by consideration of the fully optimized geometry of the pentacoordinate dianion [formula omitted] that these phosphonates are capable of forming transition-state analogs at the active site of phosphoryl transfer enzymes.
UR - http://www.scopus.com/inward/record.url?scp=33751386328&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751386328&partnerID=8YFLogxK
U2 - 10.1021/jo00060a050
DO - 10.1021/jo00060a050
M3 - Article
SN - 0022-3263
VL - 58
SP - 2272
EP - 2281
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 8
ER -