Abstract
In this manuscript, we explore how the solution of the matrix differential Riccati equation (MDRE) can be computed with the Extreme Theory of Functional Connections (X-TFC). X-TFC is a physics-informed neural network that uses functional interpolation to analytically satisfy linear constraints, such as the MDRE’s terminal constraint. We utilize two approaches for solving the MDRE with X-TFC: direct and indirect implementation. The first approach involves solving the MDRE directly with X-TFC, where the matrix equations are vectorized to form a system of first order differential equations and solved with iterative least squares. In the latter approach, the MDRE is first transformed into a matrix differential Lyapunov equation (MDLE) based on the anti-stabilizing solution of the algebraic Riccati equation. The MDLE is easier to solve with X-TFC because it is linear, while the MDRE is nonlinear. Furthermore, the MDLE solution can easily be transformed back into the MDRE solution. Both approaches are validated by solving a fluid catalytic reactor problem and comparing the results with several state-of-the-art methods. Our work demonstrates that the first approach should be performed if a highly accurate solution is desired, while the second approach should be used if a quicker computation time is needed.
Original language | English (US) |
---|---|
Article number | 3635 |
Journal | Mathematics |
Volume | 11 |
Issue number | 17 |
DOIs | |
State | Published - Sep 2023 |
Keywords
- differential Lyapunov equation
- differential Riccati equation
- functional interpolation
- optimal control
- physics-informed neural network
ASJC Scopus subject areas
- Computer Science (miscellaneous)
- General Mathematics
- Engineering (miscellaneous)