TY - GEN
T1 - Psyche Project Implementation During the COVID Pandemic
AU - Maxwell, Jennifer
AU - Imken, Travis
AU - Mase, Robert
AU - Oh, David
AU - Safavizadeh, Melody
AU - Solish, Benjamin
AU - Warner, Noah
AU - Elkins-Tanton, Lindy T.
AU - Lord, Peter
N1 - Publisher Copyright: © 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - In January 2017, 'Psyche: Journey to a Metal World' was selected for implementation as part of NASA's Discovery program. The Psyche mission will utilize electric propulsion with SPT-140 Hall thrusters to rendezvous and orbit the metal-rich asteroid (16) Psyche, in the main asteroid belt between Mars and Jupiter. The Psyche spacecraft requires no chemical propulsion and, when launched in 2022, will be the first mission to use Hall thrusters beyond lunar orbit. The Psyche spacecraft is a hybrid development with Jet Propulsion Laboratory (JPL)-provided deep-space avionics and communications equipment mounted on a high-heritage MAXAR (formerly Space Systems Loral) Solar-Electric Propulsion (SEP) Chassis, based on their 1300 series of GEO communications satellites. The spacecraft is equipped to support a suite of science instruments, as well as a demonstration of the Deep Space Optical Communications (DSOC) technology. The spacecraft has sufficient onboard resources, autonomy, redundancy, and operability to complete a 3.5-year cruise to 16 Psyche, followed by a 20-month campaign of science investigations while orbiting the asteroid. The mission's early concept design and progress through Preliminary Design Review (PDR) has been described in previous work. The paper will cover the recent mission progress from the Critical Design Review (CDR) through the start of Spacecraft Environmental Testing, which took place during the COVID pandemic. The authors will highlight the successful remote collaboration between the major partners: ASU, JPL, MAXAR, and the Payload teams that led to the initiation of the Assembly, Test, Launch, Operations Phase (ATLO) in early March 2021. Emphasis will be placed on the effects that the COVID-19 pandemic had on the work environment over the last 16+ months, including challenges to delivery of flight hardware and test equipment. In addition to the COVID-19 challenges, other significant anomalies discovered during design and test will be described along with any impacts to the overall science capability of the mission.
AB - In January 2017, 'Psyche: Journey to a Metal World' was selected for implementation as part of NASA's Discovery program. The Psyche mission will utilize electric propulsion with SPT-140 Hall thrusters to rendezvous and orbit the metal-rich asteroid (16) Psyche, in the main asteroid belt between Mars and Jupiter. The Psyche spacecraft requires no chemical propulsion and, when launched in 2022, will be the first mission to use Hall thrusters beyond lunar orbit. The Psyche spacecraft is a hybrid development with Jet Propulsion Laboratory (JPL)-provided deep-space avionics and communications equipment mounted on a high-heritage MAXAR (formerly Space Systems Loral) Solar-Electric Propulsion (SEP) Chassis, based on their 1300 series of GEO communications satellites. The spacecraft is equipped to support a suite of science instruments, as well as a demonstration of the Deep Space Optical Communications (DSOC) technology. The spacecraft has sufficient onboard resources, autonomy, redundancy, and operability to complete a 3.5-year cruise to 16 Psyche, followed by a 20-month campaign of science investigations while orbiting the asteroid. The mission's early concept design and progress through Preliminary Design Review (PDR) has been described in previous work. The paper will cover the recent mission progress from the Critical Design Review (CDR) through the start of Spacecraft Environmental Testing, which took place during the COVID pandemic. The authors will highlight the successful remote collaboration between the major partners: ASU, JPL, MAXAR, and the Payload teams that led to the initiation of the Assembly, Test, Launch, Operations Phase (ATLO) in early March 2021. Emphasis will be placed on the effects that the COVID-19 pandemic had on the work environment over the last 16+ months, including challenges to delivery of flight hardware and test equipment. In addition to the COVID-19 challenges, other significant anomalies discovered during design and test will be described along with any impacts to the overall science capability of the mission.
UR - http://www.scopus.com/inward/record.url?scp=85137598416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137598416&partnerID=8YFLogxK
U2 - 10.1109/AERO53065.2022.9843595
DO - 10.1109/AERO53065.2022.9843595
M3 - Conference contribution
T3 - IEEE Aerospace Conference Proceedings
BT - 2022 IEEE Aerospace Conference, AERO 2022
PB - IEEE Computer Society
T2 - 2022 IEEE Aerospace Conference, AERO 2022
Y2 - 1 January 2022
ER -