Radar: Residual analysis for anomaly detection in attributed networks

Jundong Li, Harsh Dani, Xia Hu, Huan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

175 Scopus citations

Abstract

Attributed networks are pervasive in different domains, ranging from social networks, gene regulatory networks to financial transaction networks. This kind of rich network representation presents challenges for anomaly detection due to the heterogeneity of two data representations. A vast majority of existing algorithms assume certain properties of anomalies are given a prior. Since various types of anomalies in real-world attributed networks coexist, the assumption that priori knowledge regarding anomalies is available does not hold. In this paper, we investigate the problem of anomaly detection in attributed networks generally from a residual analysis perspective, which has been shown to be effective in traditional anomaly detection problems. However, it is a non-trivial task in attributed networks as interactions among instances complicate the residual modeling process. Methodologically, we propose a learning framework to characterize the residuals of attribute information and its coherence with network information for anomaly detection. By learning and analyzing the residuals, we detect anomalies whose behaviors are singularly different from the majority. Experiments on real datasets show the effectiveness and generality of the proposed framework.

Original languageEnglish (US)
Title of host publication26th International Joint Conference on Artificial Intelligence, IJCAI 2017
EditorsCarles Sierra
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2152-2158
Number of pages7
ISBN (Electronic)9780999241103
DOIs
StatePublished - 2017
Event26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, Australia
Duration: Aug 19 2017Aug 25 2017

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume0

Conference

Conference26th International Joint Conference on Artificial Intelligence, IJCAI 2017
Country/TerritoryAustralia
CityMelbourne
Period8/19/178/25/17

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Radar: Residual analysis for anomaly detection in attributed networks'. Together they form a unique fingerprint.

Cite this