Radio telescope manufacturing with adaptive aluminum thermoforming and fringe projection metrology

W. Ellis, D. Kim, J. Hyatt, C. Davila-Peralta, J. Berkson, R. Ball, B. Jeong, R. Pecha, N. Julicher, I. Pimienta, J. Voris, S. Kwon, C. Garard, D. Torres

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Large-scale radio telescope projects will be important in answering modern astronomical questions like those of the National Academies' Astro2020 survey. We propose an efficient and cost-effective thermoforming process with fringe projection metrology (FPM) as an alternative to current panel fabrication methods. In our thermoforming process, we use a flexure plate with actuated tiles to create an adjustable mold inside an oven. Unshaped panels are placed on the adjustable mold and heat is applied, thermoforming the panel to the mold shape. This process allows for the rapid prototyping and production of many panel shapes with sufficient accuracy and reduced recurring costs. We apply FPM to evaluate the mold and panel shapes. FPM applies phase-shifted fiducial patterns, camera stereo vision, and triangulation to measure the thermoformed panel. We applied these technologies in beginning the construction of the Public Outreach Radio Telescope (PORT) and its off-axis dish of 26, 0.5 m2, 1/8" thick panels. The PORT is designed for 30dB of gain at λ = 21 cm wavelength, and the dish was toleranced to λ = 3 cm wavelength for future observations. In this proof of concept, we have installed thermoformed panels measured with FPM on a radio telescope.

Original languageEnglish (US)
Title of host publicationAstronomical Optics
Subtitle of host publicationDesign, Manufacture, and Test of Space and Ground Systems IV
EditorsTony B. Hull, Daewook Kim, Pascal Hallibert
PublisherSPIE
ISBN (Electronic)9781510665682
DOIs
StatePublished - 2023
EventAstronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV 2023 - San Diego, United States
Duration: Aug 21 2023Aug 24 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12677

Conference

ConferenceAstronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV 2023
Country/TerritoryUnited States
CitySan Diego
Period8/21/238/24/23

Keywords

  • adjustable mold
  • fringe projection
  • metrology
  • radio telescope
  • thermoforming

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Radio telescope manufacturing with adaptive aluminum thermoforming and fringe projection metrology'. Together they form a unique fingerprint.

Cite this