TY - JOUR
T1 - Rational and combinatorial approaches toengineering styrene production by Saccharomyces cerevisiae
AU - McKenna, Rebekah
AU - Thompson, Brian
AU - Pugh, Shawn
AU - Nielsen, David
N1 - Publisher Copyright: © 2014 McKenna et al.; licensee BioMed Central.
PY - 2014/8/21
Y1 - 2014/8/21
N2 - Background: Styrene is an important building-block petrochemical and monomer used to produce numerous plastics. Whereas styrene bioproduction by Escherichia coli was previously reported, the long-term potential of this approach will ultimately rely on the use of hosts with improved industrial phenotypes, such as the yeast Saccharomyces cerevisiae. Results: Classical metabolic evolution was first applied to isolate a mutant capable of phenylalanine over-production to 357 mg/L. Transcription analysis revealed up-regulation of several phenylalanine biosynthesis pathway genes including ARO3, encoding the bottleneck enzyme DAHP synthase. To catalyze the first pathway step, phenylalanine ammonia lyase encoded by PAL2 from A. thaliana was constitutively expressed from a high copy plasmid. The final pathway step, phenylacrylate decarboxylase, was catalyzed by the native FDC1. Expression of FDC1 was naturally induced by trans-cinnamate, the pathway intermediate and its substrate, at levels sufficient for ensuring flux through the pathway. Deletion of ARO10 to eliminate the competing Ehrlich pathway and expression of a feedback-resistant DAHP synthase encoded by ARO4 K229L preserved and promoted the endogenous availability precursor phenylalanine, leading to improved pathway flux and styrene production. These systematic improvements allowed styrene titers to ultimately reach 29 mg/L at a glucose yield of 1.44 mg/g, a 60% improvement over the initial strain. Conclusions: The potential of S. cerevisiae as a host for renewable styrene production has been demonstrated. Significant strain improvements, however, will ultimately be needed to achieve economical production levels.
AB - Background: Styrene is an important building-block petrochemical and monomer used to produce numerous plastics. Whereas styrene bioproduction by Escherichia coli was previously reported, the long-term potential of this approach will ultimately rely on the use of hosts with improved industrial phenotypes, such as the yeast Saccharomyces cerevisiae. Results: Classical metabolic evolution was first applied to isolate a mutant capable of phenylalanine over-production to 357 mg/L. Transcription analysis revealed up-regulation of several phenylalanine biosynthesis pathway genes including ARO3, encoding the bottleneck enzyme DAHP synthase. To catalyze the first pathway step, phenylalanine ammonia lyase encoded by PAL2 from A. thaliana was constitutively expressed from a high copy plasmid. The final pathway step, phenylacrylate decarboxylase, was catalyzed by the native FDC1. Expression of FDC1 was naturally induced by trans-cinnamate, the pathway intermediate and its substrate, at levels sufficient for ensuring flux through the pathway. Deletion of ARO10 to eliminate the competing Ehrlich pathway and expression of a feedback-resistant DAHP synthase encoded by ARO4 K229L preserved and promoted the endogenous availability precursor phenylalanine, leading to improved pathway flux and styrene production. These systematic improvements allowed styrene titers to ultimately reach 29 mg/L at a glucose yield of 1.44 mg/g, a 60% improvement over the initial strain. Conclusions: The potential of S. cerevisiae as a host for renewable styrene production has been demonstrated. Significant strain improvements, however, will ultimately be needed to achieve economical production levels.
KW - Aromatics
KW - Phenylalanine
KW - Styrene
KW - Yeast
UR - http://www.scopus.com/inward/record.url?scp=84919787681&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919787681&partnerID=8YFLogxK
U2 - 10.1186/s12934-014-0123-2
DO - 10.1186/s12934-014-0123-2
M3 - Article
C2 - 25162943
SN - 1475-2859
VL - 13
JO - Microbial cell factories
JF - Microbial cell factories
IS - 1
M1 - 123
ER -