Abstract
Overlapped speech poses a significant problem in a variety of applications in speech processing including speaker identification, speaker diarization, and speech recognition among others. To address it, existing systems combine source separation with algorithms for processing non-overlapped speech (e.g. source separation + follow-on speech recognition). In this paper we propose a modified network architecture to simultaneously recognize keywords from overlapped speech without explicitly having to perform source separation. We build our network by adding capsule layers to a ResNet architecture that has shown state-of-the-art performance on a traditional keyword recognition task. We evaluate the model on a series of 10-word overlapped keyword recognition experiments, using speaker dependent and speaker independent training. Results indicate that Residual + Capsule (ResCap) network shows marked improvement in recognizing overlapped speech, especially in experiments where there is a mismatch in the number of overlapped speakers between the training set and the test set.
Original language | English (US) |
---|---|
Pages (from-to) | 3337-3341 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2019-September |
DOIs | |
State | Published - 2019 |
Event | 20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language, INTERSPEECH 2019 - Graz, Austria Duration: Sep 15 2019 → Sep 19 2019 |
Keywords
- Capsule networks
- Keyword spotting
- Overlapped speech
- Recognition
- ResNet
- Residual networks
- Speech recognition
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modeling and Simulation