TY - JOUR
T1 - Retrieval of water vapor using ground-based observations from a prototype ATOMMS active centimeter- and millimeter-wavelength occultation instrument
AU - Ward, Dale M.
AU - Robert Kursinski, E.
AU - Otarola, Angel C.
AU - Stovern, Michael
AU - McGhee, Josh
AU - Young, Abe
AU - Hainsworth, Jared
AU - Hagen, Jeff
AU - Sisk, William
AU - Reed, Heather
N1 - Funding Information: Acknowledgements. We want to thank Jeff Kingsley for his support in making critical resources available at the University of Arizona’s Steward Observatory needed to complete the ATOMMS instrumentation, and Chris Walker for sharing the Steward Observatory Radio Astronomy Laboratory (SORAL) facilities with us during development of the prototype ATOMMS instrument. We also want to thank Jim Grantham for providing access and modifications to the Mt. Bigelow and Mt. Lemmon facilities to support these observations. We thank David Adams and two anonymous reviewers, whose constructive criticism improved the presentation of this paper considerably. This work was supported by the National Science Foundation Major Research Instrumentation (MRI) Program grant 0723239 and the National Science Foundation, Division of Atmospheric and Geospace Sciences (GEO/AGS) grants 0946411 and 1313563. In particular, we want to thank Jay Fein, program scientist and manager at NSF, who passed away in 2016. Without Jay’s insight and relentless effort and support, this research would never have been funded and taken place. A portion of the data analysis was supported by PlanetIQ, Golden, CO. Publisher Copyright: © Author(s) 2019.
PY - 2019/3/27
Y1 - 2019/3/27
N2 - A fundamental goal of satellite weather and climate observations is profiling the atmosphere with in situ-like precision and resolution with absolute accuracy and unbiased, all-weather, global coverage. While GPS radio occultation (RO) has perhaps come closest in terms of profiling the gas state from orbit, it does not provide sufficient information to simultaneously profile water vapor and temperature. We have been developing the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) RO system that probes the 22 and 183 GHz water vapor absorption lines to simultaneously profile temperature and water vapor from the lower troposphere to the mesopause. Using an ATOMMS instrument prototype between two mountaintops, we have demonstrated its ability to penetrate through water vapor, clouds and rain up to optical depths of 17 (7 orders of magnitude reduction in signal power) and still isolate the vapor absorption line spectrum to retrieve water vapor with a random uncertainty of less than 1 %. This demonstration represents a key step toward an orbiting ATOMMS system for weather, climate and constraining processes. ATOMMS water vapor retrievals from orbit will not be biased by climatological or first-guess constraints and will be capable of capturing nearly the full range of variability through the atmosphere and around the globe, in both clear and cloudy conditions, and will therefore greatly improve our understanding and analysis of water vapor. This information can be used to improve weather and climate models through constraints on and refinement of processes affecting and affected by water vapor.
AB - A fundamental goal of satellite weather and climate observations is profiling the atmosphere with in situ-like precision and resolution with absolute accuracy and unbiased, all-weather, global coverage. While GPS radio occultation (RO) has perhaps come closest in terms of profiling the gas state from orbit, it does not provide sufficient information to simultaneously profile water vapor and temperature. We have been developing the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) RO system that probes the 22 and 183 GHz water vapor absorption lines to simultaneously profile temperature and water vapor from the lower troposphere to the mesopause. Using an ATOMMS instrument prototype between two mountaintops, we have demonstrated its ability to penetrate through water vapor, clouds and rain up to optical depths of 17 (7 orders of magnitude reduction in signal power) and still isolate the vapor absorption line spectrum to retrieve water vapor with a random uncertainty of less than 1 %. This demonstration represents a key step toward an orbiting ATOMMS system for weather, climate and constraining processes. ATOMMS water vapor retrievals from orbit will not be biased by climatological or first-guess constraints and will be capable of capturing nearly the full range of variability through the atmosphere and around the globe, in both clear and cloudy conditions, and will therefore greatly improve our understanding and analysis of water vapor. This information can be used to improve weather and climate models through constraints on and refinement of processes affecting and affected by water vapor.
UR - http://www.scopus.com/inward/record.url?scp=85063572124&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063572124&partnerID=8YFLogxK
U2 - 10.5194/amt-12-1955-2019
DO - 10.5194/amt-12-1955-2019
M3 - Article
SN - 1867-1381
VL - 12
SP - 1955
EP - 1977
JO - Atmospheric Measurement Techniques
JF - Atmospheric Measurement Techniques
IS - 3
ER -