TY - JOUR
T1 - Role of CO in attenuated vasoconstrictor reactivity of mesenteric resistance arteries after chronic hypoxia
AU - Gonzales, Rayna J.
AU - Walker, Benjimen R.
PY - 2002
Y1 - 2002
N2 - Chronic hypoxia (CH) is associated with a persistent reduction in systemic vasoconstrictor reactivity. Experiments on aortic ring segments isolated from CH rats suggest that enhanced vascular expression of heme oxygenase (HO) and resultant production of the vasodilator carbon monoxide (CO) may underlie this attenuated vasoreactivity after hypoxia. Similar to the aorta, small arteries from CH rats exhibit blunted reactivity; however, the regulatory role of CO in the resistance vasculature has not been established. Therefore, we examined the significance of HO activity on responsiveness to phenylephrine (PE) in the mesenteric circulation of control and CH rats. To document that the mesenteric bed demonstrates reduced reactivity after CH, we determined the vasoconstrictor responses of conscious, chronically instrumented male Sprague-Dawley rats to PE under control conditions and then immediately after exposure to 48 h CH (0.5 atm). All rats showed reduced mesenteric vasoconstriction to PE after CH. To examine the role of CO in reduced reactivity, small mesenteric arteries (100-200 μm intraluminal diameter) from control and 48-h CH rats were isolated and mounted on glass cannulas, pressurized to 60 mmHg and superfused with increasing concentrations of PE under normoxic conditions. Similar to the intact circulation, vessels from CH rats exhibited reduced vasoconstrictor sensitivity to PE compared with controls that persisted in the presence of nitric oxide synthase inhibition. The HO inhibitor, zinc protoporphyrin IX (5 μM) enhanced reactivity only in CH vessels. Additionally, a range of concentrations of the HO substrate heme-L-lysinate caused vasodilation in CH vessels but not in controls. Thus we conclude that CO contributes a significant vasodilator influence in resistance vessels after CH that may account for diminished vasoconstrictor responsiveness under these conditions.
AB - Chronic hypoxia (CH) is associated with a persistent reduction in systemic vasoconstrictor reactivity. Experiments on aortic ring segments isolated from CH rats suggest that enhanced vascular expression of heme oxygenase (HO) and resultant production of the vasodilator carbon monoxide (CO) may underlie this attenuated vasoreactivity after hypoxia. Similar to the aorta, small arteries from CH rats exhibit blunted reactivity; however, the regulatory role of CO in the resistance vasculature has not been established. Therefore, we examined the significance of HO activity on responsiveness to phenylephrine (PE) in the mesenteric circulation of control and CH rats. To document that the mesenteric bed demonstrates reduced reactivity after CH, we determined the vasoconstrictor responses of conscious, chronically instrumented male Sprague-Dawley rats to PE under control conditions and then immediately after exposure to 48 h CH (0.5 atm). All rats showed reduced mesenteric vasoconstriction to PE after CH. To examine the role of CO in reduced reactivity, small mesenteric arteries (100-200 μm intraluminal diameter) from control and 48-h CH rats were isolated and mounted on glass cannulas, pressurized to 60 mmHg and superfused with increasing concentrations of PE under normoxic conditions. Similar to the intact circulation, vessels from CH rats exhibited reduced vasoconstrictor sensitivity to PE compared with controls that persisted in the presence of nitric oxide synthase inhibition. The HO inhibitor, zinc protoporphyrin IX (5 μM) enhanced reactivity only in CH vessels. Additionally, a range of concentrations of the HO substrate heme-L-lysinate caused vasodilation in CH vessels but not in controls. Thus we conclude that CO contributes a significant vasodilator influence in resistance vessels after CH that may account for diminished vasoconstrictor responsiveness under these conditions.
KW - Heme oxygenase
KW - Rat
UR - http://www.scopus.com/inward/record.url?scp=0036087909&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036087909&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.2002.282.1.h30
DO - 10.1152/ajpheart.2002.282.1.h30
M3 - Article
C2 - 11748044
SN - 0363-6135
VL - 282
SP - H30-H37
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 1 51-1
ER -