TY - GEN
T1 - Simulations and analysis of fluorescence effects in semiconductor x-ray and gamma-ray detectors
AU - Cronin, Kelsea P.
AU - Kupinski, Matthew A.
AU - Barber, H. Bradford
AU - Furenlid, Lars R.
N1 - Publisher Copyright: © 2022 SPIE.
PY - 2022
Y1 - 2022
N2 - Photon-counting semiconductor detectors are a key technology for reducing dose in clinical x-ray imaging procedures, such as CT, and improving performance in gamma-ray imaging procedures such as SPECT. These detectors offer excellent energy resolution and high spatial resolution. To stop high-energy photons, high-Z semiconductors must be used, such as CdTe, TlBr or other emerging candidates. These crystals often suffer from poor hole transport due to hole trapping, which can greatly affect signal, even when data is primarily collected from anodes. There are many interesting challenges in the production of these detectors as well as in developing complete quantitative models of the photon-matter interaction, charge transport, and signal induction. Prior work in our group has focused on optimal ways to estimate photon interaction parameters (x,y,z) and energy (E). This work is based on statistical models and calibration data. In recent work we are exploring a method to account for k x-ray fluorescence and to model signals induced on a double-sided strip detector. Our approach is Monte-Carlo sampling of interaction details, followed by charge transport and signal induction modeling via weighting potentials. First our simulation creates first and second order statistics for three charge induction cases: simple transport, charge sharing, and x-ray fluorescence. Using mean signals and covariance matrices from these cases we build a likelihood that can be used with maximum likelihood methods to estimate the primary interaction location and classify whether the event's energy deposition involved fluorescence. In planned work we will test the model against experimental semiconductor detector data.
AB - Photon-counting semiconductor detectors are a key technology for reducing dose in clinical x-ray imaging procedures, such as CT, and improving performance in gamma-ray imaging procedures such as SPECT. These detectors offer excellent energy resolution and high spatial resolution. To stop high-energy photons, high-Z semiconductors must be used, such as CdTe, TlBr or other emerging candidates. These crystals often suffer from poor hole transport due to hole trapping, which can greatly affect signal, even when data is primarily collected from anodes. There are many interesting challenges in the production of these detectors as well as in developing complete quantitative models of the photon-matter interaction, charge transport, and signal induction. Prior work in our group has focused on optimal ways to estimate photon interaction parameters (x,y,z) and energy (E). This work is based on statistical models and calibration data. In recent work we are exploring a method to account for k x-ray fluorescence and to model signals induced on a double-sided strip detector. Our approach is Monte-Carlo sampling of interaction details, followed by charge transport and signal induction modeling via weighting potentials. First our simulation creates first and second order statistics for three charge induction cases: simple transport, charge sharing, and x-ray fluorescence. Using mean signals and covariance matrices from these cases we build a likelihood that can be used with maximum likelihood methods to estimate the primary interaction location and classify whether the event's energy deposition involved fluorescence. In planned work we will test the model against experimental semiconductor detector data.
KW - K X-ray Fluorescence
KW - SPECT
KW - Semiconductor Detectors
UR - http://www.scopus.com/inward/record.url?scp=85131215162&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131215162&partnerID=8YFLogxK
U2 - 10.1117/12.2610686
DO - 10.1117/12.2610686
M3 - Conference contribution
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2022
A2 - Zhao, Wei
A2 - Yu, Lifeng
PB - SPIE
T2 - Medical Imaging 2022: Physics of Medical Imaging
Y2 - 21 March 2022 through 27 March 2022
ER -