Abstract
Feature selection aims to reduce dimensionality for building comprehensible learning models with good generalization performance. Feature selection algorithms are largely studied separately according to the type of learning: supervised or unsupervised. This work exploits intrinsic properties underlying supervised and unsupervised feature selection algorithms, and proposes a unified framework for feature selection based on spectral graph theory. The proposed framework is able to generate families of algorithms for both supervised and unsupervised feature selection. And we show that existing powerful algorithms such as ReliefF (supervised) and Laplacian Score (unsupervised) are special cases of the proposed framework. To the best of our knowledge, this work is the first attempt to unify supervised and unsupervised feature selection, and enable their joint study under a general framework. Experiments demonstrated the efficacy of the novel algorithms derived from the framework.
Original language | English (US) |
---|---|
Title of host publication | ACM International Conference Proceeding Series |
Pages | 1151-1157 |
Number of pages | 7 |
Volume | 227 |
DOIs | |
State | Published - 2007 |
Event | 24th International Conference on Machine Learning, ICML 2007 - Corvalis, OR, United States Duration: Jun 20 2007 → Jun 24 2007 |
Other
Other | 24th International Conference on Machine Learning, ICML 2007 |
---|---|
Country/Territory | United States |
City | Corvalis, OR |
Period | 6/20/07 → 6/24/07 |
ASJC Scopus subject areas
- Human-Computer Interaction