TY - GEN
T1 - Stochastic optimization of nonlinear energy sinks using resonance-based clustering
AU - Boroson, Ethan
AU - Missoum, Samy
N1 - Publisher Copyright: Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - Nonlinear energy sinks (NESs) are promising devices for achieving passive vibration mitigation. Unlike traditional tuned mass dampers (TMDs), NESs, characterized by nonlinear stiffness properties, are not tuned to specific frequencies and absorb energy over a wider range of frequencies. NES efficiency is achieved through time-limited resonances, leading to the capture and dissipation of energy. However, the efficiency with which a NES dissipates energy is highly dependent on design parameters and loading conditions. In fact, it has been shown that a NES can exhibit a near-discontinuous efficiency. Thus, NES optimal design must account for uncertainty. The premise of the stochastic optimization method proposed is the segregation of efficiency regions separated by discontinuities in potentially high dimensional space. Clustering, support vector machine classification, and dedicated adaptive sampling constitute the basic techniques for maximizing the expected value of NES efficiency. Previous works depended solely on the ratio of energy dissipated by the NES for clustering. This work also includes information about the type of m:p resonances present. Three examples of optimization for the maximization of the expected value of efficiency for NESs subjected to transient loading are presented. The optimization accounts for both design variables with uncertainty and aleatory variables to characterize loading.
AB - Nonlinear energy sinks (NESs) are promising devices for achieving passive vibration mitigation. Unlike traditional tuned mass dampers (TMDs), NESs, characterized by nonlinear stiffness properties, are not tuned to specific frequencies and absorb energy over a wider range of frequencies. NES efficiency is achieved through time-limited resonances, leading to the capture and dissipation of energy. However, the efficiency with which a NES dissipates energy is highly dependent on design parameters and loading conditions. In fact, it has been shown that a NES can exhibit a near-discontinuous efficiency. Thus, NES optimal design must account for uncertainty. The premise of the stochastic optimization method proposed is the segregation of efficiency regions separated by discontinuities in potentially high dimensional space. Clustering, support vector machine classification, and dedicated adaptive sampling constitute the basic techniques for maximizing the expected value of NES efficiency. Previous works depended solely on the ratio of energy dissipated by the NES for clustering. This work also includes information about the type of m:p resonances present. Three examples of optimization for the maximization of the expected value of efficiency for NESs subjected to transient loading are presented. The optimization accounts for both design variables with uncertainty and aleatory variables to characterize loading.
UR - http://www.scopus.com/inward/record.url?scp=85032216166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032216166&partnerID=8YFLogxK
U2 - 10.1115/IMECE201667115
DO - 10.1115/IMECE201667115
M3 - Conference contribution
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
Y2 - 11 November 2016 through 17 November 2016
ER -