Abstract
Studies of the composition of the interfaces in the anode and cathode regions of lithium alloy/metal sulfide battery systems should lead to a clearer understanding of overall battery performance. Using techniques developed for studies of other active metals and their oxides, a study was made of these critical interfaces in order to correlate the results to battery performance data. The electrochemical system of interest for the thermally-activated batteries consists of a lithium alloy anode, a potassium chloride-lithium chloride electrolyte with binder material, and an iron disulfide cathode material. The results of studies by electron and photomicroscopy, electron microprobe (EM) analysis, Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) for the anode/electrolyte-binder (EB) interface and the cathode/electrolyte-binder interface are discussed. The results are outlined according to the two active electrochemical components for various states of discharge.
Original language | English (US) |
---|---|
Pages (from-to) | 225-229 |
Number of pages | 5 |
Journal | Journal of geophysical research |
Volume | 79-2 |
State | Published - 1979 |
Event | Unknown conference - Los Angeles, CA, USA Duration: Oct 14 1979 → Oct 19 1979 |
ASJC Scopus subject areas
- Geophysics
- Forestry
- Oceanography
- Aquatic Science
- Ecology
- Water Science and Technology
- Soil Science
- Geochemistry and Petrology
- Earth-Surface Processes
- Atmospheric Science
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Palaeontology