Abstract
Today's need for more complex, capable systems in a short timeframe is leading many organizations towards the integration of existing systems into network-centric, knowledge-based system-of-systems (SoS). Software and system cost model tools to date have focused on the software and system development activities of a single system. When viewing the new SoS architectures, one finds that the effort associated with the design and integration of these SoSs is not handled well, if at all, in current cost models. This paper includes (1) a comparison of various SoS definitions and concepts with respect to cost models, (2) a classification of these definitions in terms of product, process, and personnel focus, and (3) the definition of a set of discriminators for defining model boundaries and potential drivers for an SoS cost estimation model. Eleven SoS definitions are synthesized to provide reasonable coverage for different properties of SoS and illustrated in two examples.
Original language | English (US) |
---|---|
Pages (from-to) | 993-998 |
Number of pages | 6 |
Journal | Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics |
Volume | 1 |
State | Published - 2005 |
Event | IEEE Systems, Man and Cybernetics Society, Proceedings - 2005 International Conference on Systems, Man and Cybernetics - Waikoloa, HI, United States Duration: Oct 10 2005 → Oct 12 2005 |
Keywords
- Cost estimation
- Cost modeling
- FCS
- GEOSS
- System of Systems definitions
ASJC Scopus subject areas
- General Engineering