TY - JOUR
T1 - Temporal and spatial variation of episodic wind erosion in unburned and burned semiarid shrubland
AU - Whicker, Jeffrey J.
AU - Breshears, David D.
AU - Wasiolek, Piotr T.
AU - Kirchner, Thomas B.
AU - Tavani, Rebecca A.
AU - Schoep, David A.
AU - Rodgers, John C.
N1 - Funding Information: Acknowledgements This work was supported by the National Natural
PY - 2002
Y1 - 2002
N2 - Redistribution of soil, nutrients, and contaminants is often driven by wind erosion in semiarid shrublands. Wind erosion depends on wind velocity (particularly during episodic, high-velocity winds) and on vegetation, which is generally sparse and spatially heterogeneous in semiarid ecosystems. Further, the vegetation cover can be rapidly and greatly altered due to disturbances, particularly fire. Few studies, however, have evaluated key temporal and spatial components of wind erosion with respect to (i) erosion rates on the scale of weeks as a function of episodic high-velocity winds, (ii) rates at unburned and burned sites, and (iii) within-site spatial heterogeneity in erosion. Measuring wind erosion in unburned and recently burned Chihuahuan desert shrubland, we found (i) weekly wind erosion was related more to daily peak wind velocities than to daily average velocities as consistent with our findings of a threshold wind velocity at approximately 7 m s-1; (ii) greater erodibility in burned vs. unburned shrubland as indicated by erosion thresholds, aerodynamic roughness, and nearground soil movement; and (iii) burned shrubland lost soil from intercanopy and especially canopy patches in contrast to unburned shrubland, where soil accumulated in canopy patches. Our results are among the first to quantify post-fire wind erosion and highlight the importance of accounting for finer temporal and spatial variation in shrubland wind erosion. This finer-scale variation relates to semiarid land degradation, and is particularly relevant for predictions of contaminant resuspension and redistribution, both of which historically ignore finer-scale temporal and spatial variation in wind erosion.
AB - Redistribution of soil, nutrients, and contaminants is often driven by wind erosion in semiarid shrublands. Wind erosion depends on wind velocity (particularly during episodic, high-velocity winds) and on vegetation, which is generally sparse and spatially heterogeneous in semiarid ecosystems. Further, the vegetation cover can be rapidly and greatly altered due to disturbances, particularly fire. Few studies, however, have evaluated key temporal and spatial components of wind erosion with respect to (i) erosion rates on the scale of weeks as a function of episodic high-velocity winds, (ii) rates at unburned and burned sites, and (iii) within-site spatial heterogeneity in erosion. Measuring wind erosion in unburned and recently burned Chihuahuan desert shrubland, we found (i) weekly wind erosion was related more to daily peak wind velocities than to daily average velocities as consistent with our findings of a threshold wind velocity at approximately 7 m s-1; (ii) greater erodibility in burned vs. unburned shrubland as indicated by erosion thresholds, aerodynamic roughness, and nearground soil movement; and (iii) burned shrubland lost soil from intercanopy and especially canopy patches in contrast to unburned shrubland, where soil accumulated in canopy patches. Our results are among the first to quantify post-fire wind erosion and highlight the importance of accounting for finer temporal and spatial variation in shrubland wind erosion. This finer-scale variation relates to semiarid land degradation, and is particularly relevant for predictions of contaminant resuspension and redistribution, both of which historically ignore finer-scale temporal and spatial variation in wind erosion.
UR - http://www.scopus.com/inward/record.url?scp=0036510502&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036510502&partnerID=8YFLogxK
U2 - 10.2134/jeq2002.5990
DO - 10.2134/jeq2002.5990
M3 - Article
C2 - 11931452
SN - 0047-2425
VL - 31
SP - 599
EP - 612
JO - Journal of Environmental Quality
JF - Journal of Environmental Quality
IS - 2
ER -