Abstract
We report the results of a study exploring the stellar populations of 13 luminous (L > 1.2L), spectroscopically confirmed, galaxies in the redshift interval 5.5 < z < 6.5, all with Hubble Space Telescope (HST) Wide Field Camera 3/infrared and Spitzer Infrared Array Camera imaging from the HST/Cosmic Assembly Near-infrared Deep Survey and Spitzer Extended Deep Survey. Based on fittingthe observed photometry with galaxy spectral energy distribution (SED) templates covering a wide range of different star formation histories, including exponentially increasing star formation rates and a self-consistent treatment of Lyα emission, we find that the derived stellar masses lie within the range of 109<M< 1010 M and are robust to within a factor of 2. In contrast, we confirmprevious reports that the ages of the stellar populations are poorly constrained. Although the best-fitting models for 3/13 of the sample have ages of 300 Myr, the degeneracies introduced by dust extinction mean that only two of these objects actually require a 300 Myr old stellar populat on to reproduce the observed photometry.We also explore SED fittingwith more general, two-component models (burst plus ongoing star formation), thereby relaxing the requirement that the current star formation rate and assembled stellar mass must be coupled, and allow for nebular line+continuumemission. On average, the inclusion of nebular emission leads to lower stellar mass estimates (median offset 0.18 dex), moderately higher specific star formation rates, and allows for a wider range of plausible stellar ages. However, based on our SED modelling, we find no strong evidence for extremely young ages in our sample (i.e. <50 Myr). Finally, considering all of the different star formation histories explored, we find that the median best-fitting ages are of the order of 200-300 Myr and that the objects with the tightest constraints indicate ages in the range of 50-200 Myr
Original language | English (US) |
---|---|
Pages (from-to) | 302-322 |
Number of pages | 21 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 429 |
Issue number | 1 |
DOIs | |
State | Published - Feb 11 2013 |
Keywords
- Evolution - galaxies
- Formation - galaxies
- High-redshift
- galaxies
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science