TY - JOUR
T1 - The microbiome and gynaecological cancer development, prevention and therapy
AU - Łaniewski, Paweł
AU - Ilhan, Zehra Esra
AU - Herbst-Kralovetz, Melissa M.
N1 - Funding Information: We would like to acknowledge our clinical colleagues and past and present members of the Herbst-Kralovetz lab for thoughtful discussions on this topic. P.Ł., Z.E.I. and M.M.H.-K. have been supported by the Mary Kay Foundation Translational Research Grant (no. 017-48), the Valley Research Partnership Grant (no. VRP26), the Flinn Foundation Grant (no. 1974), the Alternatives Research and Development Foundation Grant, and the National Institutes of Health Grants from the National Institute of Allergy and Infectious Diseases (1R15AI113457-01A1) and the National Cancer Institute (NCI) and Office for Research on Women’s Health (P30CA023074 and 2U54CA143924-11). Publisher Copyright: © 2020, Springer Nature Limited.
PY - 2020
Y1 - 2020
N2 - The female reproductive tract (FRT), similar to other mucosal sites, harbours a site-specific microbiome, which has an essential role in maintaining health and homeostasis. In the majority of women of reproductive age, the microbiota of the lower FRT (vagina and cervix) microenvironment is dominated by Lactobacillus species, which benefit the host through symbiotic relationships. By contrast, the upper FRT (uterus, Fallopian tubes and ovaries) might be sterile in healthy individuals or contain a low-biomass microbiome with a diverse mixture of microorganisms. When dysbiosis occurs, altered immune and metabolic signalling can affect hallmarks of cancer, including chronic inflammation, epithelial barrier breach, changes in cellular proliferation and apoptosis, genome instability, angiogenesis and metabolic dysregulation. These pathophysiological changes might lead to gynaecological cancer. Emerging evidence shows that genital dysbiosis and/or specific bacteria might have an active role in the development and/or progression and metastasis of gynaecological malignancies, such as cervical, endometrial and ovarian cancers, through direct and indirect mechanisms, including modulation of oestrogen metabolism. Cancer therapies might also alter microbiota at sites throughout the body. Reciprocally, microbiota composition can influence the efficacy and toxic effects of cancer therapies, as well as quality of life following cancer treatment. Modulation of the microbiome via probiotics or microbiota transplant might prove useful in improving responsiveness to cancer treatment and quality of life. Elucidating these complex host–microbiome interactions, including the crosstalk between distal and local sites, will translate into interventions for prevention, therapeutic efficacy and toxic effects to enhance health outcomes for women with gynaecological cancers.
AB - The female reproductive tract (FRT), similar to other mucosal sites, harbours a site-specific microbiome, which has an essential role in maintaining health and homeostasis. In the majority of women of reproductive age, the microbiota of the lower FRT (vagina and cervix) microenvironment is dominated by Lactobacillus species, which benefit the host through symbiotic relationships. By contrast, the upper FRT (uterus, Fallopian tubes and ovaries) might be sterile in healthy individuals or contain a low-biomass microbiome with a diverse mixture of microorganisms. When dysbiosis occurs, altered immune and metabolic signalling can affect hallmarks of cancer, including chronic inflammation, epithelial barrier breach, changes in cellular proliferation and apoptosis, genome instability, angiogenesis and metabolic dysregulation. These pathophysiological changes might lead to gynaecological cancer. Emerging evidence shows that genital dysbiosis and/or specific bacteria might have an active role in the development and/or progression and metastasis of gynaecological malignancies, such as cervical, endometrial and ovarian cancers, through direct and indirect mechanisms, including modulation of oestrogen metabolism. Cancer therapies might also alter microbiota at sites throughout the body. Reciprocally, microbiota composition can influence the efficacy and toxic effects of cancer therapies, as well as quality of life following cancer treatment. Modulation of the microbiome via probiotics or microbiota transplant might prove useful in improving responsiveness to cancer treatment and quality of life. Elucidating these complex host–microbiome interactions, including the crosstalk between distal and local sites, will translate into interventions for prevention, therapeutic efficacy and toxic effects to enhance health outcomes for women with gynaecological cancers.
UR - http://www.scopus.com/inward/record.url?scp=85079765988&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079765988&partnerID=8YFLogxK
U2 - 10.1038/s41585-020-0286-z
DO - 10.1038/s41585-020-0286-z
M3 - Review article
C2 - 32071434
SN - 1759-4812
JO - Nature Reviews Urology
JF - Nature Reviews Urology
ER -