TY - JOUR
T1 - The structure and function of steroid receptor protein
AU - Miesfeld, Roger L.
PY - 1989
Y1 - 1989
N2 - This review has highlighted several topics in the study of steroid hormone action. The unanswered questions regarding the mechanism of ligand-controlled LRF activity, the extent of evolutionary conservation and specificity of DNA binding, and the validity of various models of transcriptional regulation mediated through gene networks point to the future direction of research in this field. Steroid hormones are used extensively in clinical treatments, especially glucocorticoids.90 Our laboratory is attempting to determine which gene networks are responsible for some of these clinical phenotypes. Figure 5 points out that the study of glucocorticoid action holds a unique position because it spans both the basic sciences and the field of applied molecular biology. Now that we have a fundamental knowledge of the necessary elements required for steroid-dependent regulation of gene expression, we can better investigate the clinical responses to steroid therapy (which include devastating side effects) by isolating and characterizing the important target gene(s). In this author's opinion, future directions in the study of steroid responsiveness will have to include a systematic approach toward deciphering a variety of these LRF-regulated gene networks in experimentally feasible systems. Hopefully, work in this area may be revealing and perhaps beneficial to ongoing clinical studies. In addition, the study of mechanisms of transcriptional induction and repression, using the model system of LRFs, could be applicable to many gene regulatory systems which are controlled by such processes as development and differentiation.
AB - This review has highlighted several topics in the study of steroid hormone action. The unanswered questions regarding the mechanism of ligand-controlled LRF activity, the extent of evolutionary conservation and specificity of DNA binding, and the validity of various models of transcriptional regulation mediated through gene networks point to the future direction of research in this field. Steroid hormones are used extensively in clinical treatments, especially glucocorticoids.90 Our laboratory is attempting to determine which gene networks are responsible for some of these clinical phenotypes. Figure 5 points out that the study of glucocorticoid action holds a unique position because it spans both the basic sciences and the field of applied molecular biology. Now that we have a fundamental knowledge of the necessary elements required for steroid-dependent regulation of gene expression, we can better investigate the clinical responses to steroid therapy (which include devastating side effects) by isolating and characterizing the important target gene(s). In this author's opinion, future directions in the study of steroid responsiveness will have to include a systematic approach toward deciphering a variety of these LRF-regulated gene networks in experimentally feasible systems. Hopefully, work in this area may be revealing and perhaps beneficial to ongoing clinical studies. In addition, the study of mechanisms of transcriptional induction and repression, using the model system of LRFs, could be applicable to many gene regulatory systems which are controlled by such processes as development and differentiation.
UR - http://www.scopus.com/inward/record.url?scp=0024568623&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024568623&partnerID=8YFLogxK
U2 - 10.3109/10409238909086395
DO - 10.3109/10409238909086395
M3 - Article
C2 - 2651007
SN - 1040-9238
VL - 24
SP - 101
EP - 117
JO - Critical reviews in biochemistry and molecular biology
JF - Critical reviews in biochemistry and molecular biology
IS - 2
ER -