Thermal management of bioMEMS: Temperature control for ceramic-based PCR and DNA detection devices

Daniel J. Sadler, Rajnish Changrani, Peter Roberts, Chia Fu Chou, Frederic Zenhausern

Research output: Contribution to journalArticlepeer-review

85 Scopus citations

Abstract

Integrated microfluidic devices for amplification and detection of biological samples that employ closed-loop temperature monitoring and control have been demonstrated within a multilayer low temperature co-fired ceramics (LTCC) platform. Devices designed within this platform demonstrate a high level of integration including integrated microfluidic channels, thick-film screen-printed Ag-Pd heaters, surface mounted temperature sensors, and air-gaps for thermal isolation. In addition, thermal-fluidic finite element models have been developed using CFDRC ACE+ software which allows for optimization of such parameters as heater input power, fluid flow rate, sensor placement, and air-gap size and placement. Two examples of devices that make use of these concepts are provided. The first is a continuous flow polymerase chain reaction (PCR) device that requires three thermally isolated zones of 94°C, 65°C, and 72°C, and the second is an electronic DNA detection chip which requires hybridization at 35°C. Both devices contain integrated heaters and surface mount silicon transistors which function as temperature sensors. Closed loop feedback control is provided by an external PI controller that monitors the temperature dependant I-V relationship of the sensor and adjusts heater power accordingly. Experimental data confirms that better than ±0.5°C can be maintained for these devices irrespective of changing ambient conditions. In addition, good matching with model predictions has been achieved, thus providing a powerful design tool for thermal-fluidic microsystems.

Original languageEnglish (US)
Pages (from-to)309-316
Number of pages8
JournalIEEE Transactions on Components and Packaging Technologies
Volume26
Issue number2
DOIs
StatePublished - Jun 2003

Keywords

  • BioMEMS
  • Feedback control
  • MEMS
  • Microfluidic
  • Microsystems
  • Thermal-fluidic

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Thermal management of bioMEMS: Temperature control for ceramic-based PCR and DNA detection devices'. Together they form a unique fingerprint.

Cite this