TY - GEN
T1 - Towards explainable networked prediction
AU - Li, Liangyue
AU - Liu, Huan
N1 - Publisher Copyright: © 2018 Association for Computing Machinery.
PY - 2018/10/17
Y1 - 2018/10/17
N2 - Networked prediction has attracted lots of research attention in recent years. Compared with the traditional learning setting, networked prediction is even harder to understand due to its coupled, multi-level nature. The learning process propagates top-down through the underlying network from the macro level (the entire learning system), to meso level (learning tasks), and to micro level (individual learning examples). In the meanwhile, the networked prediction setting also offers rich context to explain the learning process through the lens of multi-aspect, including training examples (e.g., what are the most influential examples), the learning tasks (e.g., which tasks are most important) and the task network (e.g., which task connections are the keys). Thus, we propose a multi-aspect, multi-level approach to explain networked prediction. The key idea is to efficiently quantify the influence on different levels the learning system due to the perturbation of various aspects. Th proposed method offers two distinctive advantages: (1) multi-aspe multi-level: it is able to explain networked prediction from multip aspects (i.e., example-task-network) at multiple levels (i.e., macr meso-micro); (2) efficiency: it has a linear complexity by efficient evaluating the influences of changes to the networked predictio without retraining.
AB - Networked prediction has attracted lots of research attention in recent years. Compared with the traditional learning setting, networked prediction is even harder to understand due to its coupled, multi-level nature. The learning process propagates top-down through the underlying network from the macro level (the entire learning system), to meso level (learning tasks), and to micro level (individual learning examples). In the meanwhile, the networked prediction setting also offers rich context to explain the learning process through the lens of multi-aspect, including training examples (e.g., what are the most influential examples), the learning tasks (e.g., which tasks are most important) and the task network (e.g., which task connections are the keys). Thus, we propose a multi-aspect, multi-level approach to explain networked prediction. The key idea is to efficiently quantify the influence on different levels the learning system due to the perturbation of various aspects. Th proposed method offers two distinctive advantages: (1) multi-aspe multi-level: it is able to explain networked prediction from multip aspects (i.e., example-task-network) at multiple levels (i.e., macr meso-micro); (2) efficiency: it has a linear complexity by efficient evaluating the influences of changes to the networked predictio without retraining.
KW - Explainable Networked Prediction
KW - Influence Function
UR - http://www.scopus.com/inward/record.url?scp=85058036460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058036460&partnerID=8YFLogxK
U2 - 10.1145/3269206.3269276
DO - 10.1145/3269206.3269276
M3 - Conference contribution
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 1819
EP - 1822
BT - CIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management
A2 - Paton, Norman
A2 - Candan, Selcuk
A2 - Wang, Haixun
A2 - Allan, James
A2 - Agrawal, Rakesh
A2 - Labrinidis, Alexandros
A2 - Cuzzocrea, Alfredo
A2 - Zaki, Mohammed
A2 - Srivastava, Divesh
A2 - Broder, Andrei
A2 - Schuster, Assaf
PB - Association for Computing Machinery
T2 - 27th ACM International Conference on Information and Knowledge Management, CIKM 2018
Y2 - 22 October 2018 through 26 October 2018
ER -