Transcriptome analyses indicate that heat stress-induced inflammation in white adipose tissue and oxidative stress in skeletal muscle is partially moderated by zilpaterol supplementation in beef cattle

Rachel R. Reith, Renae L. Sieck, Pablo C. Grijalva, Rebecca M. Swanson, Anna M. Fuller, Duarte E. Diaz, Ty B. Schmidt, Dustin T. Yates, Jessica L. Petersen

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Heat stress (HS) triggers oxidative stress, systemic inflammation, and disrupts growth efficiency of livestock. β-adrenergic agonists supplemented to ruminant livestock improve growth performance, increase skeletal muscle mass, and decrease carcass fat. The objective of this study was to understand the independent and interacting effects of HS and zilpaterol hydrochloride (ZH) supplementation on the transcriptome of subcutaneous white adipose tissue and the longissimus dorsi muscle in steers. Twenty-four Red Angus-based steers were assigned to thermoneutral (TN; Temperature Humidity Index [THI] = 68) or HS (THI = 73-85) conditions and were not supplemented or supplemented with ZH (8.33 mg/kg/d) for 21 d in a 2 × 2 factorial. Steers in the TN condition were pair-fed to the average daily feed intake of HS steers. RNA was isolated from adipose tissue and skeletal muscle samples collected via biopsy on 3, 10, and 21 d and sequenced using 3ʹ Tag-Seq to an achieved average depth of 3.6 million reads/sample. Transcripts, mapped to ARS-UCD1.2, were quantified. Differential expression (DE) analyses were performed in DESeq2 with a significance threshold for false discovery rate of 0.05. In adipose, 4 loci (MISP3, APOL6, SLC25A4, and S100A12) were DE due to ZH on day 3, and 2 (RRAD, ALB) were DE due to the interaction of HS and ZH on day 10 (Padj < 0.05). In muscle, 40 loci (including TENM4 and OAZ1) were DE due to ZH on day 10, and 6 loci (HIF1A, LOC101903734, PDZD9, HNRNPU, MTUS1, and TMCO6) were DE due to environment on day 21 (Padj < 0.05). To explore biological pathways altered by environment, supplement, and their interaction, loci with DE (Praw < 0.05) were evaluated in Ingenuity Pathway Analysis. In adipose, 509 pathways were predicted to be altered (P < 0.01): 202 due to HS, 126 due to ZH, and 181 due to the interaction; these included inflammatory pathways predicted to be upregulated due to HS but downregulated due to the interaction of HS and ZH. In muscle, 113 pathways were predicted to be altered (P < 0.01): 23 due to HS, 66 due to ZH, and 24 due to the interaction of HS and ZH. Loci and pathway data in muscle suggest HS induced oxidative stress and that the stress response was moderated by ZH. Metabolic pathways were predicted to be altered due to HS, ZH, and their interaction in both tissues. These data provide evidence that HS and ZH interact to alter expression of genes in metabolic and immune function pathways and that ZH moderates some adverse effects of HS.

Original languageEnglish (US)
Article numberskac019
JournalJournal of animal science
Volume100
Issue number3
DOIs
StatePublished - Mar 1 2022

Keywords

  • Bos taurus
  • HIF1-A
  • RNA-Seq
  • efficiency
  • metabolism
  • pathway analysis

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Fingerprint

Dive into the research topics of 'Transcriptome analyses indicate that heat stress-induced inflammation in white adipose tissue and oxidative stress in skeletal muscle is partially moderated by zilpaterol supplementation in beef cattle'. Together they form a unique fingerprint.

Cite this