Abstract
The transverse carpal ligament (TCL) forms the palmar boundary of the carpal tunnel and plays an important role in carpal tunnel mechanics. TCL hypertrophy has been observed for individuals with carpal tunnel syndrome (CTS) and postulated as a potential etiologic factor. Ultrasound is particularly advantageous for TCL imaging because of its capability of detecting the interfaces between the TCL and other tissues. The purposes of this study were to develop an ultrasound based method to measure the TCL thickness and to test the validity and reliability of this method. Three operators conducted two sessions of ultrasound examination on eight cadaveric specimens and eight healthy volunteers. A custom script was used to calculate TCL thickness along the TCL length from the ultrasound images. The ultrasound based TCL thickness of the cadaveric specimens was compared with the dissection based TCL thickness for validation. The results showed Pearson's correlation coefficients of 0.867-0.928, intraclass correlation coefficient (ICC) values of 0.726-0.865, a standard error of measurement of 0.02-0.07 mm and a minimal detectable difference of 0.05-0.15 mm. The high correlation coefficients and small errors indicate that the ultrasound based method is valid for measuring TCL thickness. Furthermore, ultrasound measurements showed excellent intraoperator and interoperator reliability with ICC values as 0.826-0.933 and 0.840-0.882, respectively. The ultrasound based TCL thickness was in the range of 0.93-2.34 (1.54 ± 0.33) mm and agreed well with previous studies. The ultrasound method developed in this study is a valuable tool to examine morphologic properties of healthy and pathologic TCLs.
Original language | English (US) |
---|---|
Pages (from-to) | 982-988 |
Number of pages | 7 |
Journal | Ultrasound in Medicine and Biology |
Volume | 38 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2012 |
Externally published | Yes |
Keywords
- Reliability
- Transverse carpal ligament
- Ultrasound
- Validity
ASJC Scopus subject areas
- Radiological and Ultrasound Technology
- Biophysics
- Acoustics and Ultrasonics