Unsupervised feature selection for multi-view data in social media

Jiliang Tang, Xia Hu, Huiji Gao, Huan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

101 Scopus citations

Abstract

The explosive popularity of social media produces mountains of high-dimensional data and the nature of social media also determines that its data is often unlabelled, noisy and partial, presenting new challenges to feature selection. Social media data can be represented by heterogeneous feature spaces in the form of multiple views. In general, multiple views can be complementary and, when used together, can help handle noisy and partial data for any single-view feature selection. These unique challenges and properties motivate us to develop a novel feature selection framework to handle multi-view social media data. In this paper, we investigate how to exploit relations among views to help each other select relevant features, and propose a novel unsupervised feature selection framework, MVFS, for multiview social media data. We systematically evaluate the proposed framework in multi-view datasets from social media websites and the results demonstrate the effectiveness and potential of MVFS.

Original languageEnglish (US)
Title of host publicationProceedings of the 2013 SIAM International Conference on Data Mining, SDM 2013
EditorsJoydeep Ghosh, Zoran Obradovic, Jennifer Dy, Zhi-Hua Zhou, Chandrika Kamath, Srinivasan Parthasarathy
PublisherSiam Society
Pages270-278
Number of pages9
ISBN (Electronic)9781611972627
DOIs
StatePublished - 2013
EventSIAM International Conference on Data Mining, SDM 2013 - Austin, United States
Duration: May 2 2013May 4 2013

Publication series

NameProceedings of the 2013 SIAM International Conference on Data Mining, SDM 2013

Other

OtherSIAM International Conference on Data Mining, SDM 2013
Country/TerritoryUnited States
CityAustin
Period5/2/135/4/13

ASJC Scopus subject areas

  • Computer Science Applications
  • Software
  • Theoretical Computer Science
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Unsupervised feature selection for multi-view data in social media'. Together they form a unique fingerprint.

Cite this