Visualization of supercritical carbon dioxide flow through a converging-diverging nozzle

Chang Hyeon Lim, Gokul Pathikonda, Sandeep Pidaparti, Devesh Ranjan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Supercritical carbon dioxide (sCO2) power cycles have the potential to offer a higher plant efficiency than the traditional Rankine superheated/supercritical steam cycle or Helium Brayton cycles. The most attractive characteristic of sCO2 is that the fluid density is high near the critical point, allowing compressors to consume less power than conventional gas Brayton cycles and maintain a smaller turbomachinery size. Despite these advantages, there still exist unsolved challenges in design and operation of sCO2 compressors near the critical point. Drastic changes in fluid properties near the critical point and the high compressibility of the fluid pose several challenges. Operating a sCO2 compressor near the critical point has potential to produce two phase flow, which can be detrimental to turbomachinery performance. To mimic the expanding regions of compressor blades, flow through a converging-diverging nozzle is investigated. Pressure profiles along the nozzle are recorded and presented for operating conditions near the critical point. Using high speed shadowgraph images, onset and growth of condensation is captured along the nozzle. Pressure profiles were calculated using a one-dimensional homogeneous equilibrium model and compared with experimental data.

Original languageEnglish (US)
Title of host publicationOil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858721
DOIs
StatePublished - 2019
Externally publishedYes
EventASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019 - Phoenix, United States
Duration: Jun 17 2019Jun 21 2019

Publication series

NameProceedings of the ASME Turbo Expo
Volume9

Conference

ConferenceASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Country/TerritoryUnited States
CityPhoenix
Period6/17/196/21/19

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Visualization of supercritical carbon dioxide flow through a converging-diverging nozzle'. Together they form a unique fingerprint.

Cite this