TY - JOUR
T1 - WindowSHAP
T2 - An efficient framework for explaining time-series classifiers based on Shapley values
AU - Nayebi, Amin
AU - Tipirneni, Sindhu
AU - Reddy, Chandan K.
AU - Foreman, Brandon
AU - Subbian, Vignesh
N1 - Publisher Copyright: © 2023 Elsevier Inc.
PY - 2023/8
Y1 - 2023/8
N2 - Unpacking and comprehending how black-box machine learning algorithms (such as deep learning models) make decisions has been a persistent challenge for researchers and end-users. Explaining time-series predictive models is useful for clinical applications with high stakes to understand the behavior of prediction models, e.g., to determine how different variables and time points influence the clinical outcome. However, existing approaches to explain such models are frequently unique to architectures and data where the features do not have a time-varying component. In this paper, we introduce WindowSHAP, a model-agnostic framework for explaining time-series classifiers using Shapley values. We intend for WindowSHAP to mitigate the computational complexity of calculating Shapley values for long time-series data as well as improve the quality of explanations. WindowSHAP is based on partitioning a sequence into time windows. Under this framework, we present three distinct algorithms of Stationary, Sliding and Dynamic WindowSHAP, each evaluated against baseline approaches, KernelSHAP and TimeSHAP, using perturbation and sequence analyses metrics. We applied our framework to clinical time-series data from both a specialized clinical domain (Traumatic Brain Injury - TBI) as well as a broad clinical domain (critical care medicine). The experimental results demonstrate that, based on the two quantitative metrics, our framework is superior at explaining clinical time-series classifiers, while also reducing the complexity of computations. We show that for time-series data with 120 time steps (hours), merging 10 adjacent time points can reduce the CPU time of WindowSHAP by 80 % compared to KernelSHAP. We also show that our Dynamic WindowSHAP algorithm focuses more on the most important time steps and provides more understandable explanations. As a result, WindowSHAP not only accelerates the calculation of Shapley values for time-series data, but also delivers more understandable explanations with higher quality.
AB - Unpacking and comprehending how black-box machine learning algorithms (such as deep learning models) make decisions has been a persistent challenge for researchers and end-users. Explaining time-series predictive models is useful for clinical applications with high stakes to understand the behavior of prediction models, e.g., to determine how different variables and time points influence the clinical outcome. However, existing approaches to explain such models are frequently unique to architectures and data where the features do not have a time-varying component. In this paper, we introduce WindowSHAP, a model-agnostic framework for explaining time-series classifiers using Shapley values. We intend for WindowSHAP to mitigate the computational complexity of calculating Shapley values for long time-series data as well as improve the quality of explanations. WindowSHAP is based on partitioning a sequence into time windows. Under this framework, we present three distinct algorithms of Stationary, Sliding and Dynamic WindowSHAP, each evaluated against baseline approaches, KernelSHAP and TimeSHAP, using perturbation and sequence analyses metrics. We applied our framework to clinical time-series data from both a specialized clinical domain (Traumatic Brain Injury - TBI) as well as a broad clinical domain (critical care medicine). The experimental results demonstrate that, based on the two quantitative metrics, our framework is superior at explaining clinical time-series classifiers, while also reducing the complexity of computations. We show that for time-series data with 120 time steps (hours), merging 10 adjacent time points can reduce the CPU time of WindowSHAP by 80 % compared to KernelSHAP. We also show that our Dynamic WindowSHAP algorithm focuses more on the most important time steps and provides more understandable explanations. As a result, WindowSHAP not only accelerates the calculation of Shapley values for time-series data, but also delivers more understandable explanations with higher quality.
KW - Explainable artificial intelligence
KW - Model interpretation
KW - Shapley value
KW - Time-series data
UR - http://www.scopus.com/inward/record.url?scp=85167844219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85167844219&partnerID=8YFLogxK
U2 - 10.1016/j.jbi.2023.104438
DO - 10.1016/j.jbi.2023.104438
M3 - Article
C2 - 37414368
SN - 1532-0464
VL - 144
JO - Journal of Biomedical Informatics
JF - Journal of Biomedical Informatics
M1 - 104438
ER -