XBully: Cyberbullying detection within a multi-modal context

Lu Cheng, Jundong Li, Yasin Silva, Deborah Hall, Huan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

97 Scopus citations

Abstract

Over the last decade, research has revealed the high prevalence of cyberbullying among youth and raised serious concerns in society. Information on the social media platforms where cyberbullying is most prevalent (e.g., Instagram, Facebook, Twitter) is inherently multi-modal, yet most existing work on cyberbullying identification has focused solely on building generic classification models that rely exclusively on text analysis of online social media sessions (e.g., posts). Despite their empirical success, these efforts ignore the multi-modal information manifested in social media data (e.g., image, video, user profile, time, and location), and thus fail to offer a comprehensive understanding of cyberbullying. Conventionally, when information from different modalities is presented together, it often reveals complementary insights about the application domain and facilitates better learning performance. In this paper, we study the novel problem of cyberbullying detection within a multi-modal context by exploiting social media data in a collaborative way. This task, however, is challenging due to the complex combination of both cross-modal correlations among various modalities and structural dependencies between different social media sessions, and the diverse attribute information of different modalities. To address these challenges, we propose XBully, a novel cyberbullying detection framework, that first reformulates multi-modal social media data as a heterogeneous network and then aims to learn node embedding representations upon it. Extensive experimental evaluations on real-world multi-modal social media datasets show that the XBully framework is superior to the state-of-the-art cyberbullying detection models.

Original languageEnglish (US)
Title of host publicationWSDM 2019 - Proceedings of the 12th ACM International Conference on Web Search and Data Mining
PublisherAssociation for Computing Machinery, Inc
Pages339-347
Number of pages9
ISBN (Electronic)9781450359405
DOIs
StatePublished - Jan 30 2019
Event12th ACM International Conference on Web Search and Data Mining, WSDM 2019 - Melbourne, Australia
Duration: Feb 11 2019Feb 15 2019

Publication series

NameWSDM 2019 - Proceedings of the 12th ACM International Conference on Web Search and Data Mining

Conference

Conference12th ACM International Conference on Web Search and Data Mining, WSDM 2019
Country/TerritoryAustralia
CityMelbourne
Period2/11/192/15/19

Keywords

  • Collaborative learning
  • Cyberbullying detection
  • Multi-modality
  • Network embedding
  • Social media

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'XBully: Cyberbullying detection within a multi-modal context'. Together they form a unique fingerprint.

Cite this